Math 247A Lecture 25 Notes

Daniel Raban

March 9, 2020

1 Oscillatory Integrals in Higher Dimensions

1.1 Nonstationary phase

Here is the case of nonstationary phase.

Proposition 1.1. Let $\phi : \mathbb{R}^d \to \mathbb{R}$, $\psi : \mathbb{R}^d \to \mathbb{C}$ be smooth. Assume supp ψ is compact and $\|\nabla \phi(x)\| \neq 0$ for all $x \in \text{supp } \psi$. Then $I(\lambda) = \int e^{i\lambda\phi(x)}\psi(x) \, dx$ satisfies

$$|I(\lambda)| \lesssim_m \lambda^{-m} \quad \forall m \ge 0.$$

Proof. As in the 1 dimensional case, we use integration by parts. We write

$$e^{i\lambda\phi(x)} = \frac{\nabla\phi(x)}{i\lambda|\nabla\phi(x)|^2} \cdot \nabla(e^{i\lambda\phi(x)}).$$

Then

$$I(\lambda) = \int e^{i\lambda\phi(x)} \nabla \cdot \left[\frac{\nabla\phi(x)}{i\lambda|\nabla\phi(x)|^2} \psi(x) \right] dx,$$

so

$$|I(\lambda)| \lesssim \lambda^{-1}$$
,

where the implicit constant depends on the C^2 norm of ϕ and the C^1 norm of ψ . Now iterate.

There is an equivalent of Van der Corput's lemma.

Proposition 1.2. Let $\phi : \mathbb{R}^d \to \mathbb{R}$, $\psi : \mathbb{R}^d \to \mathbb{C}$ be smooth. Assume ψ is compactly supported and $|D^{\alpha}\phi(x)| \geq 1$ for all $x \in \text{supp } \psi$ for some $\alpha \in \mathbb{N}^d$ with $|\alpha| \geq 1$. Then $I(\lambda) = \int e^{i\lambda\phi(x)}\psi(x) dx$ satisfies

$$|I(\lambda)| \le C(|\alpha|, \phi)\lambda^{-1/|\alpha|} [\|\psi\|_{\infty} + \|\nabla\psi\|_{1}].$$

Remark 1.1. This is worse than the previous proposition when $|\alpha| = 1$. We will also beat it when $|\alpha| = 2$, so we will not actually prove it.

1.2 Stationary phase and Moore's change of variables lemma

Here is the case of stationary phase.

Proposition 1.3 (stationary phase). Let $\phi : \mathbb{R}^d \to \mathbb{R}$ be smooth, and assume ϕ has a nondegenerate critical point at x_0 ; that is, $\nabla \phi(x_0) = 0$, but $\det \left[\frac{\partial^2 \phi}{\partial x_i x_j}\right]_{1 \leq i,j \leq d} (x_0) \neq 0$. Assume that $\psi : \mathbb{R}^d \to \mathbb{C}$ is smooth and supported in a sufficiently small neighborhood of x_0 . Then

$$I(\lambda) = \int e^{i\lambda\phi(x)}\psi(x) dx$$

= $e^{i\lambda\phi(x_0)}\psi(x_0)(2\pi i)^{d/2}\lambda^{-d/2}(\det[D^2\phi(x_0)])^{-1/2} + O(\lambda^{-d/2-1})$

as $\lambda \to \infty$.

Remark 1.2. If we just aim for the correct decay order (and not the precise coefficient), we argue as follows: Let $a : \mathbb{R}^d \to \mathbb{R}$ be a cutoff with

$$a(x) = \begin{cases} 1 & |x| \le 1\\ 0 & |x| \ge 2 \end{cases}$$

and decompose $I(\lambda) = I_1(\lambda) + I_2(\lambda)$, where

$$I_1(\lambda) = \int e^{i\lambda\phi(x)}\psi(x)a(\lambda^{1/2}(x-x_0)) dx.$$

Then

$$|I_1(\lambda)| \lesssim \lambda^{-d/2}$$
.

Integration by parts gives

$$|I_2(\lambda)| \lesssim_m \lambda^{-m} \quad \forall m \ge 0.$$

Lemma 1.1 (Morse). If x_0 is a nondegenerate critical point of a smooth function ϕ : $\mathbb{R}^d \to \mathbb{R}$, then there exists a smooth change of variables $x \mapsto y(x)$ such that $y(x_0) = 0$, $\frac{\partial y}{\partial x}(x_0) = \mathrm{Id}$, and

$$\phi(x) - \phi(x_0) = \sum_{j=1}^{d} \frac{1}{2} \lambda_j y_j^2,$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of $D^2 \phi(x_0)$.

Proof. Performing an orthogonal change of variables, we may assume that $D^2\phi(x_0) = \operatorname{diag}(\lambda_1,\ldots,\lambda_d)$. By Taylor expansion,

$$\phi(x) = \phi(x_0) + \nabla \phi(x_0) \cdot (x - x_0) + \int_0^1 (1 - t) \frac{d^2}{dt^2} [\phi(x_0 + t(x - x_0))] dt.$$

So

$$\phi(x) - \phi(x_0) = \int_0^1 (1 - t) \frac{d}{dt} [(x - x_0) \cdot \nabla \phi(x_0 + t(x - x_0))] dt$$

$$= \sum_{i,j \ge 1} \int_0^1 (1 - t)(x - x_0)_i (x - x_0)_j \frac{\partial^2 \phi}{\partial x_i \partial x_j} (x_0 + t(x - x_0)) dt$$

$$= \sum_{i,j \ge 1} (x - x_0)_i (x - x_0)_j m_{i,j}(x),$$

where $m_{i,j}(x) = \int_0^1 (1-t) \frac{\partial^2 \phi}{\partial x_i \partial x_j}(x_0 + t(x-x_0)) dt$. Note that the $m_{i,j}$ are smooth, $m_{i,j}(x) = m_{j,i}(x)$, and $m_{i,j}(x_0) = \frac{1}{2} \frac{\partial^2 \phi}{\partial x_i \partial x_j}(x_0)$. So

$$[m_{i,j}(x_0)]_{1 \le i,j \le d} = \frac{1}{2}\operatorname{diag}(\lambda_1,\ldots,\lambda_d).$$

We argue inductively. Assume

$$\phi(x) - \phi(x_0) = \frac{1}{2}\lambda_1 y_1^2 + \dots + \frac{1}{2}\lambda_{r-1} y_{r-1}^2 + \sum_{i,j>r} \widetilde{m}_{i,j}(y) y_i y_j$$

for some $1 \leq r \leq d$, where $y(x_0) = 0$, $\frac{\partial y}{\partial x}(x_0) = \text{Id}$, and $\widetilde{m}_{i,j} = \widetilde{m}_{j,i}$. We know that $D^2[\text{RHS}(x)]_{x=x_0} = \text{diag}(\lambda_1, \ldots, \lambda_d)$. Then

$$\frac{\partial^2}{\partial x_i \partial x_j} \left(\frac{1}{2} \lambda_k y_k^2 \right) \Big|_{x=x_0} = \left[\lambda_k \frac{\partial y_k}{\partial x_i} \frac{\partial y_k}{\partial x_j} + \lambda_k y_k \frac{\partial^2 y_k}{\partial x_i \partial x_j} \right]_{x=x_0} \\
= \lambda_k \delta_{i,k} \delta_{j,k}.$$

So

$$\left[D^2\left(\sum_{i,j\geq r}\widetilde{m}_{i,j}(y)y_iy_j\right)\right](x_0)=\operatorname{diag}(0,\ldots,0,\lambda_r,\ldots,\lambda_d).$$

We now have

$$\left. \frac{\partial^2}{\partial x_k \partial x_\ell} \left(\sum_{i,j \ge r} \widetilde{m}_{i,j}(y) y_i, y_j \right) \right|_{x=x_0} = \sum_{i,j \ge r} \widetilde{m}_{i,j}(0) \left(\delta_{k,i} \delta_{\ell,j} + \delta_{\ell,i} \delta_{k,j} \right).$$

This tells us that

$$[\widetilde{m}_{i,j}(0)]_{r \le i,j \le d} = \frac{1}{2}\operatorname{diag}(\lambda_r, \dots, \lambda_d)$$

Change variables as follows:

$$\begin{cases} y'_j = y_j & j \neq i \\ y'_r = \sqrt{\frac{\widetilde{m}_{r,r}(y)}{\lambda_r/2}} \left(y_r + \sum_{j \ge r+1} \frac{\widetilde{m}_{j,r}(y)}{\widetilde{m}_{r,r}(y)} y_j \right). \end{cases}$$

We need to show that this is a diffeomorphism with $y'(x_0) = 0$, $\frac{\partial y'}{\partial x}|_{x=x_0} = \text{Id}$, and

$$\phi(x) = \phi(x_0) = \frac{1}{2}\lambda_1 y_1^2 + \dots + \frac{1}{2}\lambda_r (y_r')^2 + \sum_{i,j \ge r+1} \widetilde{\widetilde{m}_{i,j}}(y) y_i y_j.$$

We have $y'(x_0) = 0$ because each y_i is 0 at x_0 . For $j \neq r$,

$$\left. \frac{\partial y_j'}{\partial x_i} \right|_{x - x_0} = \delta_{i,j},$$

SO

$$\left. \frac{\partial y_r'}{\partial x_i} \right|_{x=x_0} = \sqrt{\frac{\widetilde{m}_{r,r}(0)}{\lambda_r/2}} \left(\delta_{i,r} + \sum_{j \ge r+1} \frac{\widetilde{m}_{j,r}(0)}{\widetilde{m}_{r,r}(0)} \delta_{j,i} \right) = \delta_{i,r}$$

Now we have

$$\sum_{i,j\geq r} \widetilde{m}_{i,j}(y)y_iy_j - \frac{1}{2}\lambda_r(y_r')^2 = \sum_{i,j\geq r} \widetilde{m}_{i,j}(y)y_iy_j$$

$$- \widetilde{m}_{r,r} \left(y_r^2 + 2 \sum_{j\geq r+1} \frac{\widetilde{m}_{j,r}(y)}{\widetilde{m}_{r,r}(y)} y_i, y_r \right)$$

$$+ \sum_{i,j\geq r+1} \frac{\widetilde{m}_{i,r}(y)\widetilde{m}_{j,r}(y)}{\widetilde{m}_{r,r}(y)\widetilde{m}_{r,r}(y)} y_i, y_j \right)$$

$$= \sum_{i,j\geq r+1} \left[\underbrace{\widetilde{m}_{i,j}(y) - \frac{\widetilde{m}_{i,r}(y)\widetilde{m}_{j,r}(y)}{\widetilde{m}_{r,r}(y)}}_{\widetilde{m}_{r,r}(y)} \right] y_i, y_j.$$

$$= \underbrace{\widetilde{m}_{i,j}(y) - \frac{\widetilde{m}_{i,r}(y)\widetilde{m}_{j,r}(y)}{\widetilde{m}_{r,r}(y)}}_{\widetilde{m}_{r,r}(y)} y_i, y_j.$$

This completes the proof.