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1 Oscillatory Integrals in Higher Dimensions

1.1 Nonstationary phase
Here is the case of nonstationary phase.

Proposition 1.1. Let ¢ : R* = R, 1) : R¢ — C be smooth. Assume supp ) is compact and
V()| # 0 for all x € suppp. Then I(N) = [ e**@)(x) dx satisfies

TN S AT™ Ym > 0.
Proof. As in the 1 dimensional case, we use integration by parts. We write

~iAVe(a)[?
Then

IV S AT

where the implicit constant depends on the C? norm of ¢ and the C' norm of ). Now
iterate. ]

There is an equivalent of Van der Corput’s lemma.

Proposition 1.2. Let ¢ : R? = R, 1 : R — C be smooth. Assume 1) is compactly
supported and |D%¢(z)| > 1 for al x € supp®y) for some a € N¢ with |a| > 1. Then
IN) = [e?@)i(z) dx satisfies

] < Cllal, @)A1 ]loc + 1V 11]-

Remark 1.1. This is worse than the previous proposition when |a] = 1. We will also beat
it when |a| = 2, so we will not actually prove it.



1.2 Stationary phase and Moore’s change of variables lemma
Here is the case of stationary phase.

Proposition 1.3 (stationary phase). Let ¢ : R? — R be smooth, and assume ¢ has a

924 } 0
Oz;x; 1<ij<d (:UO) 7£ .
Assume that ¢ : R* — C is smooth and supported in a sufficiently small neighborhood of

xo. Then

nondegenerate critical point at xo; that is, Vo(xg) = 0, but det [

I\ = / @) (z) da
= P00y () (2mi) A2 (det[DP(0)]) 2 + OV
as A — 00.

Remark 1.2. If we just aim for the correct decay order (and not the precise coefficient),
we argue as follows: Let a : R — R be a cutoff with

a(z) = {1 | < 1

0 |z[>2

and decompose I(A\) = I1(A) + I2(\), where

L\ = / M) () a (A2 ( — 20)) da
Then
LA S A2,

Integration by parts gives
[Io(A)] S AT Ym > 0.

Lemma 1.1 (Morse). If xo is a nondegenerate critical point of a smooth function ¢ :
R? — R, then there exists a smooth change of variables x — y(z) such that y(xg) = 0,
%(mo) =1d, and

d
#(2) — dlwo) = 3 A,
j=1

where \1, ..., \q are the eigenvalues of D?¢(z0).

Proof. Performing an orthogonal change of variables, we may assume that D?¢(zg) =
diag(A1,...,Aq). By Taylor expansion,

2

1
0la) = olan) +Tfaa)™ la = 0) + | (1= 1) G lo(a0 + 1o = a0))] .

2



So

1
o) = 8(a0) = [ (1= )G llw = 20)- V(oo -+ ta — o)) d

= Z/ (1—1t)(z —z0)ilz — = )~627¢(a: + t(z — x0)) dt
0 )i g, 1 0
i,7>1
=) (= m0)i(x — mo)ymi (),
ij>1
where m; j(x fo (1— t) 8 ~(zo+t(x—9)) dt. Note that the m;,; are smooth, m; ;(z) =
2

%aaa ( 0)- So

mj,i(z), and mw(ﬂfo)

L.
[mi,j (xo)]lgingd = 5 dlag()\l, Ce ,)\d).

We argue inductively. Assume

1 1 _
o) = dlwo) = Shpt + o+ Shayly + Y g (v)yiy;

nj2r

for some 1 < r < d, where y(zg) =0, %(wo) = Id, and m;; = m;;. We know that
D?[RHS(z)] 4=z, = diag(A1,...,Aq). Then

2 oy O 2
< ey’ ‘ _ [)\k Ue Oy g Ok ]
=20 =z

Oxidx; Oz; O Ox;0z;
= )\k5i,k5j,k~

So

> iy | | (xo) = diag(0,...,0,Ar, ..., Ag).

1,j2>T
We now have

5$k8mz 2 i (W)uiruy = D ii(0) (6u,ie + 80k
hizr ig>r

r=x0
This tells us that 1
(M4, (0)]r<ij<a = 5 diag(Ar, ... Aa)
2

Change variables as follows:

yé‘:yj J#ET

Yr =/ (yT + 2 i1 Wy%yy)

3




We need to show that this is a diffeomorphism with y/(z¢) = 0, %—Z\ w=zo = Id, and
1 9 1 N9 —
¢(x) = d(z0) = ghyr + -+ A (yp)” + > i (W)viys.
i,j>r+1

We have y/(z¢) = 0 because each y; is 0 at xg. For j #r,

/
0y; — 5
3 - v
ox; oo
SO
, — 0
8yr mT, m] T =4
ox; Ar/ Z o
tla=xg v/ j>r+1

Now we have

~ 1 ~
> i (y)yiys — 5)\r(y£)2 = i)y

Lj2r hLj2r

This completes the proof.
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